Exercise 3

Each side of a square is increasing at a rate of $6 \mathrm{~cm} / \mathrm{s}$. At what rate is the area of the square increasing when the area of the square is $16 \mathrm{~cm}^{2}$?

Solution

The area of a square with side length x is

$$
A=x^{2} .
$$

Differentiate both sides with respect to t, using the chain rule on the right side.

$$
\begin{aligned}
& \frac{d}{d t}(A)=\frac{d}{d t}\left(x^{2}\right) \\
& \frac{d A}{d t}=(2 x) \cdot \frac{d x}{d t}
\end{aligned}
$$

The edge length is increasing by 6 centimeters per second, so $d x / d t=6 \mathrm{~cm} / \mathrm{s}$. Therefore, when the area of the square is $16 \mathrm{~cm}^{2}$ (that is, when $x=4$), the rate that area is increasing is

$$
\left.\frac{d A}{d t}\right|_{x=4}=2(4)(6)=48 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}
$$

